Physics First Marking Period Review Sheet

Fall, Mr. Wicks

Chapter 1: The Science of Physics

- I can explain how the subject of physics fits into science and into everyday life.
- I can explain the scientific method to someone not enrolled in Physics.
- I can understand the language used in the scientific method and I can distinguish between a hypothesis, an experiment, data, an independent variable, a dependent variable, a law, and a theory.
- I know the three types of zeros and I can count the number of significant digits in any given number.
- I can apply the rules for using significant figures in calculations. I remember that the rules for addition and subtraction are different from those for multiplication and division.
- I can use metric-metric and English-metric conversion factors to solve problems.

Tera-	Т	trillion	$10^{12} = 1,000,000,000,000$	1 inch (in.) = 2.54 cm
Giga-	G	billion	$10^9 = 1,000,000,000$	1 pound (lb.) = 454 g
Mega-	М	million	$10^6 = 1,000,000$	1 quart (qt.) = 0.946 L
Kilo-	k	thousand	$10^3 = 1,000$	
		one	$10^0 = 1$	$1 \text{ mL} = 1 \text{ cm}^3$
Deci-	d	tenth	$10^{-1} = 0.1$	
Centi-	c	hundredth	$10^{-2} = 0.01$	
Milli-	m	thousandth	$10^{-3} = 0.001$	
Micro-	μ	millionth	$10^{-6} = 0.000001$	
Nano-	n	billionth	$10^{-9} = 0.000000001$	
Pico-	р	trillionth	$10^{-12} = 0.000000000001$	

- I can demonstrate how dimensional analysis is used for problem solving.
- I can compare and contrast mass with weight and explain why scientists prefer to use mass instead of weight.
- I can explain the difference between precision and accuracy.
- I can construct both hand-drawn and computer-generated graphs, which include a title, properly labeled axes, a smooth line drawn through the points, and a slope and y-intercept for linear relationships.

Chapter 2: Motion in One Dimension

- I can calculate average velocity using both $v_{ave} = \frac{\Delta x}{\Delta t} = \frac{x_f x_i}{t_f t_i}$ and $v_{ave} = \frac{1}{2}(v_f + v_i)$
- I can determine average velocity graphically. In a position-versus-time graph for constant velocity, the slope of the line gives the average velocity. See Table 1.
- I can determine instantaneous velocity from the slope of a line tangent to the curve at a particular point on a position-versus-time graph.
- I can use $v_{ave} = \frac{\Delta x_{Total}}{\Delta t_{Total}}$ to calculate the average velocity for an entire journey if given information

about the various legs of the journey.

- I can calculate average acceleration using $a_{ave} = \frac{\Delta v}{\Delta t} = \frac{v_f v_i}{t_f t_i}$
- I can determine average acceleration and displacement graphically. In a velocity-versus-time graph for constant acceleration, the slope of the line gives acceleration and the area under the line gives displacement. See Table 1.

Physics First Marking Period Review Sheet, Page 2

• I can use the acceleration due to gravity = $g = 9.81 \text{ m/s}^2$ to solve problems (Recall $a = -g = -9.81 \text{ m/s}^2$)

Table 1: Graphing Changes in Position, Velocity, and Acceleration						
	Constant Position	Constant Velocity	Constant Acceleration	Ball Thrown Upward		
Position Versus Time:	x t	Slope = v_{ave}	x t	x t		
Velocity Versus Time:	V t	v t	Slope = a_{ave} v	Slope = -9.81 m/s ²		
Accelera- tion Versus Time:	a t	a t	a t	$a = -9.81 \text{m/s}^2$		

• Given three of the following variables—displacement, velocity, acceleration, and time, I can determine the fourth variable from concepts and equations discussed so far.

Г

• Given only two of the following variables—displacement, velocity, acceleration, and time, I can determine both of the unknown variables using the kinematic equations in the left column of Table 2.

٦

Table 2: Relationship Between the Kinematic Equations and Projectile Motion Equations				
Kinematic Equations	Missing Variable	Projectile Motion,		
		Zero Launch Angle		
		Assumptions made:		
		$a = -g$ and $v_{y,i} = 0$		
$\Delta x = v_{ave} \Delta t$	a	$\Delta x = v_x \Delta t$		
		where $v_x = a \ constant$		
$v_f = v_i + a\Delta t$	Δx	$v_{y,f} = -g\Delta t$		
$\Delta x = v_i \Delta t + \frac{1}{2} a (\Delta t)^2$	v_{final}	$\Delta y = -\frac{1}{2}g(\Delta t)^2$		
$v_f^2 = v_i^2 + 2a\Delta x$	Δt	$v_{y,f}^2 = -2g\Delta y$		

Physics First Marking Period Review Sheet, Page 3

Chapter 3: Two Dimensional Motion and Vectors

- I know that a projectile is any object that is thrown or launched.
- I understand that projectiles follow a *parabolic pathway*.
- I can use Table 2 to better understand how the zero launch angle projectile motion equations can be derived from the kinematic equations.
- I understand that the kinematic equations involve *one-dimensional motion* whereas the projectile motion equations involve *two-dimensional motion*. Two-dimensional motion means there is motion in both the horizontal and vertical directions.
 - I recall that the equation for horizontal motion ($\Delta x = v_x \Delta t$) and the equations for vertical motion

$$(v_{y,f} = -g\Delta t, \Delta y = -\frac{1}{2}g(\Delta t)^2, v_{y,f}^2 = -2g\Delta y)$$
 are independent from each other, and I can

use them to calculate information about objects that are thrown or launched.

- I recall that velocity is constant and acceleration is zero in the horizontal direction.
- I recall that acceleration is $g = 9.81 \text{ m/s}^2$ in the vertical direction.
- For projectiles launched at an angle, I can determine the *range* of the projectile from

 $\Delta x = (v_i \cos \theta) \Delta t$ and its *time of flight* from $\Delta y = (v_i \sin \theta) \Delta t - \frac{1}{2} g(\Delta t)^2$.

- For an object in free fall, I know that the object stops accelerating when the force of air resistance, \vec{F}_{Air} , equals the weight, \vec{W} . The object has reached its maximum velocity, the *terminal velocity*.
- When a quarterback throws a football, I know that the angle for a high, lob pass is related to the angle for a low, bullet pass. When both footballs are caught by a receiver standing in the same place, the sum of the launch angles is 90°.
- In distance contests for projectiles launched by cannons, catapults, trebuchets, and similar devices, projectiles achieve the farthest distance when launched at a 45° angle.
- I know that *vectors* have both magnitude and direction whereas *scalars* have magnitude but no direction. Examples of vectors are displacement, velocity, acceleration, and force.
- I can move vectors parallel to their original position in a diagram.
- I can add vectors in any order. See Table 3 for more information about vector addition.
- For vector r at angle θ to the x-axis, I can calculate the x- and y-components for r from $\Delta x = r \cos \theta$ and $\Delta y = r \sin \theta$.
- I can calculate the magnitude of vector \vec{r} from $r = \sqrt{\Delta x^2 + \Delta y^2}$ and the direction angle for \vec{r} relative to the nearest x-axis from $\theta = \tan^{-1} \left(\frac{\Delta y}{\Delta x}\right)$.
- I can subtract a vector by adding its opposite.
- I understand that multiplying or dividing vectors by scalars results in vectors.
- In addition to adding vectors mathematically as shown in the last table, I can add vectors graphically. Vectors can be drawn to scale and moved parallel to their original positions in a diagram so that they are all positioned head-to-tail. The length and direction angle for the resultant can be measured with a ruler and protractor, respectively.
- I can solve relative motion problems by using a special type of vector addition. For example, the velocity of object 1 relative to object 3 is given by $\vec{v}_{13} = \vec{v}_{12} + \vec{v}_{23}$ where object 2 can be anything.
- I know that subscripts on a velocity can be reversed by changing the vector's direction: $v_{12} = -v_{21}$

Table 3: Vector Addition					
Vector Orientation	Calculational Strategy Used				
Vectors are parallel:	Add or subtract the magnitudes (values) to get the resultant. Determine the direction by inspection.				
Vectors are perpendicular:	Use the Pythagorean Theorem, $\Delta x^2 + \Delta y^2 = r^2$, to get the resultant, r , where Δx is parallel to the x-axis and Δy is parallel to the y-axis. Use $\theta = \tan^{-1}\left(\frac{\Delta y}{\Delta x}\right)$ to get the angle, θ , made with the x-axis.				
nor perpendicular:		(Vector Resolution Method)			
	Limited usefulness	Used by most physicists			
	(1) Use the law of cosines to determine the resultant: $c^2 = a^2 + b^2 - 2ab\cos\theta$ (2) Use the law of sines to <i>help</i> determine direction: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	(1) Make a diagram. (2) Construct a vector table. (Use <i>vector</i> , <i>x</i> -direction, and <i>y</i> -direction for the column headings.) (3) Resolve vectors using $\Delta x = r \cos\theta$ and $\Delta y = r \sin\theta$ when needed. (4) Determine the signs. (5) Determine the sum of the vectors for each direction, Δx_{total} and Δy_{total} . (6) Use the Pythagorean Thm to get the resultant, r : $\Delta x_{total}^2 + \Delta y_{total}^2 = r^2$ (7) Use $\theta = \tan^{-1}\left(\frac{\Delta y_{total}}{\Delta x_{total}}\right)$ to get the angle, θ .			

Equations Available on Physics First Marking Period Test

$$\Delta x = v_{ave}\Delta t \qquad \Delta x = v_x\Delta t \qquad \Delta x = (v_i\cos\theta)\Delta t$$

$$v_f = v_i + a\Delta t \qquad \Delta y = -\frac{1}{2}g(\Delta t)^2 \qquad \Delta y = (v_i\sin\theta)\Delta t - \frac{1}{2}g(\Delta t)^2$$

$$v_f^2 = v_i^2 + 2a\Delta x \qquad \theta = \tan^{-1}\left(\frac{\Delta y}{\Delta x}\right) \qquad R = \left(\frac{v_i^2}{g}\right)\sin 2\theta$$

$$\Delta x = r\cos\theta \qquad \Delta y = r\sin\theta$$

$$c^2 = a^2 + b^2 - 2ab\cos\theta \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

- This list of equations will be provided on the test.
- You are not allowed to use note cards, review sheets, textbooks, or any other aids during the test.
- You may use a calculator. However, you are not allowed to use any other electronic devices (*i*-Pods, *i*-Phones, smart phones, netbooks, laptop computers etc.) until the last person is finished with the test.
- Calculator sharing is not allowed.
- It is to your advantage to check your work.
- All test materials including scratch paper must be returned at the end of the test.