Physics First Marking Period Review Sheet

Fall, Mr. Wicks

Chapter 1: The Science of Physics

- I can explain how the subject of physics fits into science and into everyday life.
- I can explain the scientific method to someone not enrolled in Physics.
- I can understand the language used in the scientific method and I can distinguish between a hypothesis, an experiment, data, an independent variable, a dependent variable, a law, and a theory.
- I know the three types of zeros and I can count the number of significant digits in any given number.
- I can apply the rules for using significant figures in calculations. I remember that the rules for addition and subtraction are different from those for multiplication and division.
- I can use metric-metric and English-metric conversion factors to solve problems.

Tera-	T	trillion	$10^{12}=1,000,000,000,000$	1 inch (in.) $=2.54 \mathrm{~cm}$
Giga-	G	billion	$10^{9}=1,000,000,000$	1 pound (lb.) $=454 \mathrm{~g}$
Mega-	M	million	$10^{6}=1,000,000$	1 quart (qt.) $=0.946 \mathrm{~L}$
Kilo-	k	thousand	$10^{3}=1,000$	$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
		one	$10^{0}=1$	
Deci-	d	tenth	$10^{-1}=0.1$	
Centi-	c	hundredth	$10^{-2}=0.01$	
Milli-	m	thousandth	$10^{-3}=0.001$	
Micro-	μ	millionth	$10^{-6}=0.000001$	
Nano-	n	billionth	$10^{-9}=0.000000001$	
Pico-	p	trillionth	$10^{-12}=0.000000000001$	

- I can demonstrate how dimensional analysis is used for problem solving.
- I can compare and contrast mass with weight and explain why scientists prefer to use mass instead of weight.
- I can explain the difference between precision and accuracy.
- I can construct both hand-drawn and computer-generated graphs, which include a title, properly labeled axes, a smooth line drawn through the points, and a slope and y-intercept for linear relationships.

Chapter 2: Motion in One Dimension

- I can calculate average velocity using both $\quad v_{\text {ave }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \quad$ and $\quad v_{\text {ave }}=\frac{1}{2}\left(v_{f}+v_{i}\right)$
- I can determine average velocity graphically. In a position-versus-time graph for constant velocity, the slope of the line gives the average velocity. See Table 1.
- I can determine instantaneous velocity from the slope of a line tangent to the curve at a particular point on a position-versus-time graph.
- I can use $v_{\text {ave }}=\frac{\Delta x_{\text {Total }}}{\Delta t_{\text {Total }}}$ to calculate the average velocity for an entire journey if given information about the various legs of the journey.
- I can calculate average acceleration using $a_{\text {ave }}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}$
- I can determine average acceleration and displacement graphically. In a velocity-versus-time graph for constant acceleration, the slope of the line gives acceleration and the area under the line gives displacement. See Table 1.

Physics First Marking Period Review Sheet, Page 2

- I can use the acceleration due to gravity $=g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ to solve problems (Recall $a=-g=-9.81$ $\mathrm{m} / \mathrm{s}^{2}$)

	Constant Position	Constant Velocity	Constant Acceleration	Ball Thrown Upward
Position Versus Time:				
Velocity Versus Time:				
Acceleration Versus Time:				

- Given three of the following variables-displacement, velocity, acceleration, and time, I can determine the fourth variable from concepts and equations discussed so far.
- Given only two of the following variables-displacement, velocity, acceleration, and time, I can determine both of the unknown variables using the kinematic equations in the left column of Table 2.

Table 2: Relationship Between the Kinematic Equations and Projectile Motion Equations

Kinematic Equations	Missing Variable	Projectile Motion, Zero Launch Angle
		Assumptions made: $a=-g$ and $v_{y, i}=0$
$\Delta x=v_{\text {ave }} \Delta t$	a	$\Delta x=v_{x} \Delta t$ where $v_{x}=a$ constant
$v_{f}=v_{i}+a \Delta t$	Δx	$v_{y, f}=-g \Delta t$
$\Delta x=v_{i} \Delta t+\frac{1}{2} a(\Delta t)^{2}$	$v_{\text {final }}$	$\Delta y=-\frac{1}{2} g(\Delta t)^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$	Δt	$v_{y, f}^{2}=-2 g \Delta y$

Physics First Marking Period Review Sheet, Page 3

Chapter 3: Two Dimensional Motion and Vectors

- I know that a projectile is any object that is thrown or launched.
- I understand that projectiles follow a parabolic pathway.
- I can use Table 2 to better understand how the zero launch angle projectile motion equations can be derived from the kinematic equations.
- I understand that the kinematic equations involve one-dimensional motion whereas the projectile motion equations involve two-dimensional motion. Two-dimensional motion means there is motion in both the horizontal and vertical directions.
- I recall that the equation for horizontal motion $\left(\Delta x=v_{x} \Delta t\right)$ and the equations for vertical motion $\left(v_{y, f}=-g \Delta t, \Delta y=-\frac{1}{2} g(\Delta t)^{2}, v_{y, f}^{2}=-2 g \Delta y\right)$ are independent from each other, and I can use them to calculate information about objects that are thrown or launched.
- I recall that velocity is constant and acceleration is zero in the horizontal direction.
- I recall that acceleration is $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ in the vertical direction.
- For projectiles launched at an angle, I can determine the range of the projectile from
$\Delta x=\left(v_{i} \cos \theta\right) \Delta t$ and its time of flight from $\Delta y=\left(v_{i} \sin \theta\right) \Delta t-\frac{1}{2} g(\Delta t)^{2}$.
- For an object in free fall, I know that the object stops accelerating when the force of air resistance, $\vec{F}_{\text {Air }}$, equals the weight, \vec{W}. The object has reached its maximum velocity, the terminal velocity.
- When a quarterback throws a football, I know that the angle for a high, lob pass is related to the angle for a low, bullet pass. When both footballs are caught by a receiver standing in the same place, the sum of the launch angles is 90°.
- In distance contests for projectiles launched by cannons, catapults, trebuchets, and similar devices, projectiles achieve the farthest distance when launched at a 45° angle.
- I know that vectors have both magnitude and direction whereas scalars have magnitude but no direction. Examples of vectors are displacement, velocity, acceleration, and force.
- I can move vectors parallel to their original position in a diagram.
- I can add vectors in any order. See Table 3 for more information about vector addition.
- For vector r at angle θ to the x -axis, I can calculate the x - and y -components for r from $\Delta x=r \cos \theta$ and $\Delta y=r \sin \theta$.
- I can calculate the magnitude of vector \vec{r} from $\quad r=\sqrt{\Delta x^{2}+\Delta y^{2}}$ and the direction angle for \vec{r} relative to the nearest x -axis from $\quad \theta=\tan ^{-1}\left(\frac{\Delta y}{\Delta x}\right)$.
- I can subtract a vector by adding its opposite.
- I understand that multiplying or dividing vectors by scalars results in vectors.
- In addition to adding vectors mathematically as shown in the last table, I can add vectors graphically. Vectors can be drawn to scale and moved parallel to their original positions in a diagram so that they are all positioned head-to-tail. The length and direction angle for the resultant can be measured with a ruler and protractor, respectively.
- I can solve relative motion problems by using a special type of vector addition. For example, the velocity of object 1 relative to object 3 is given by $\quad v_{13}=v_{12}+v_{23} \quad$ where object 2 can be anything.
- I know that subscripts on a velocity can be reversed by changing the vector's direction: $\vec{v}_{12}=-\vec{v}_{21}$

Table 3: Vector Addition		
Vector Orientation	Calculational Strategy Used	
Vectors are parallel:	Add or subtract the magnitudes (values) to get the resultant. Determine the direction by inspection.	
Vectors are perpendicular:	Use the Pythagorean Theorem, $\Delta x^{2}+\Delta y^{2}=r^{2}$, to get the resultant, r, where Δx is parallel to the x -axis and Δy is parallel to the y -axis. Use $\theta=\tan ^{-1}\left(\frac{\Delta y}{\Delta x}\right)$ to get the angle, θ, made with the x -axis.	
Vectors are neither parallel nor perpendicular:	Adding 2 Vectors	Adding 2 or More Vectors (Vector Resolution Method)
	Limited usefulness	Used by most physicists
	(1) Use the law of cosines to determine the resultant: $c^{2}=a^{2}+b^{2}-2 a b \cos \theta$ (2) Use the law of sines to help determine direction: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$	(1) Make a diagram. (2) Construct a vector table. (Use vector, \boldsymbol{x}-direction, and \boldsymbol{y}-direction for the column headings.) (3) Resolve vectors using $\Delta x=r \cos \theta$ and $\Delta y=r \sin \theta$ when needed. (4) Determine the signs. (5) Determine the sum of the vectors for each direction, $\Delta x_{\text {total }}$ and $\Delta y_{\text {total }}$. (6) Use the Pythagorean Thm to get the resultant, r : $\Delta x_{\text {total }}^{2}+\Delta y_{\text {total }}^{2}=r^{2}$ (7) Use $\theta=\tan ^{-1}\left(\frac{\Delta y_{\text {total }}}{\Delta x_{\text {total }}}\right)$ to get the angle, θ.

Equations Available on Physics First Marking Period Test

$\Delta y=\left(v_{i} \sin \theta\right) \Delta t-\frac{1}{2} g(\Delta t)^{2}$
$\Delta x=v_{\text {ave }} \Delta t$
$\Delta x=v_{x} \Delta t$
$\Delta y=-\frac{1}{2} g(\Delta t)^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$r=\sqrt{\Delta x^{2}+\Delta y^{2}}$
$\Delta x=r \cos \theta$
$c^{2}=a^{2}+b^{2}-2 a b \cos \theta$
$\theta=\tan ^{-1}\left(\frac{\Delta y}{\Delta x}\right)$
$\Delta y=r \sin \theta$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\sin A$ sin C
$\Delta x=\left(v_{i} \cos \theta\right) \Delta t$
$v_{f}=v_{i}+a \Delta t$
$\Delta x=v_{i} \Delta t+\frac{1}{2} a(\Delta t)^{2}$
$R=\left(\frac{v_{i}^{2}}{g}\right) \sin 2 \theta$

- This list of equations will be provided on the test.
- You are not allowed to use note cards, review sheets, textbooks, or any other aids during the test.
- You may use a calculator. However, you are not allowed to use any other electronic devices (i Pods, i-Phones, smart phones, netbooks, laptop computers etc.) until the last person is finished with the test.
- Calculator sharing is not allowed.
- It is to your advantage to check your work.
- All test materials including scratch paper must be returned at the end of the test.

